Topology driven algorithms for ridge extraction on meshes
نویسندگان
چکیده
Given a smooth surface, a ridge is a curve along which one of the principal curvatures has an extremum along its curvature line. Ridges are curves of extremal curvature and therefore encode important informations used in segmentation, registration, matching and surface analysis. Surprisingly, no method developed so far to report ridges from a mesh approximating a smooth surface comes with a careful analysis, which entails that one does not know whether the ridges are reported in a coherent fashion. To bridge this gap, we make the following contributions. First, we present a careful analysis of the orientation issues arising when one wishes to report the ridges associated to the two principal curvatures separately. The analysis highlights the subtle interplay between ridges, umbilics, and curvature lines. Second, given a triangulation T approximating a smooth generic surface S, we present sufficient conditions on T together with a certified algorithm reporting ridges in a topologically coherent fashion. Third, we develop a heuristic algorithm to process a mesh when no information on an underlying smooth surface is known. Fourth, for coarse models, we provide a filtering mechanism retaining the most stable ridges only. Fifth, we present experimental results of the heuristic algorithm for smooth surfaces as well as coarse models. Our running times improve of at least one order of magnitude state-of-the-art methods. The common point of these contributions is to exploit the topological patterns of ridges on smooth generic surfaces. These contributions also pave the way to the first certified algorithm for ridge extraction on polynomial parametric surfaces, developed in a companion paper. Key-words: Ridges, Umbilics, Meshes, Sampled Smooth Surfaces, Crest lines. Algorithmes guidés par la topologie pour la détection de lignes d’extrêmes de courbure sur un maillage Résumé : Étant donnée une surface lisse, un "ridge" est une courbe le long de laquelle une des courbures principales a un extremum en suivant sa ligne de courbure. Les ridges sont des lignes d’extrêmes de courbure et donc codent des informations importantes utilisées en segmentation, recalage, comparaison et analyse de surfaces. Néanmoins, aucune méthode calculant les ridges à partir d’un maillage approchant une surface lisse ne propose une analyse détaillée, de telle sorte qu’il est impossible de savoir si les ridges sont calculés de façon cohérente. Cet article comble cette lacune avec les contributions suivantes. Premièrement, nous présentons une analyse précise des problèmes d’orientation intervenant lors de la détection des ridges associés aux deux courbures principales séparément. Cette analyse souligne les interactions subtiles entre ridges, ombilics et lignes de courbure. Deuxièmement, étant donnée une triangulation T approchant une surface lisse générique S, nous donnons des conditions suffisantes sur T , ainsi qu’un algorithme certifié calculant les ridges avec une topologie cohérente. Troisièmement, nous développons un algorithme heuristique pour un maillage dans le cas où aucune information sur la surface sous-jacente n’est connue. Quatrièmement, pour des maillages grossiers, nous fournissons un mécanisme de filtrage pour le calcul des courbes les plus saillantes. Cinquièmement, nous présentons des résultats de l’algorithme heuristique pour des surfaces lisses discrétisées ainsi que pour des maillages grossiers. Nos temps de calculs améliorent d’au moins un ordre de grandeur ceux des méthodes état de l’art. Le point commun de ces contributions est d’exploiter les motifs topologiques des ridges sur les surfaces génériques. Ces contributions ouvrent également la voie vers le premier algorithme certifié pour l’extraction des ridges sur une surface polynomiale paramétrée qui est l’objet nos recherches actuelles. Mots-clés : Extrêmes de courbure, Ombilics, Maillages, Surfaces Lisses Echantillonnées, Lignes Saillantes. Topology driven algorithms for ridge extraction on meshes 3
منابع مشابه
Quasi Random Deployment Strategy for Reliable Communication Backbones in Wireless Sensor Networks
Topology construction and topology maintenance are significant sub-problems of topology control. Spanning tree based algorithms for topology control are basically transmission range based type construction algorithms. The construction of an effective backbone, however, is indirectly related to the placement of nodes. Also, the dependence of network reliability on the communication path undertak...
متن کاملOPTIMAL DECOMPOSITION OF FINITE ELEMENT MESHES VIA K-MEDIAN METHODOLOGY AND DIFFERENT METAHEURISTICS
In this paper the performance of four well-known metaheuristics consisting of Artificial Bee Colony (ABC), Biogeographic Based Optimization (BBO), Harmony Search (HS) and Teaching Learning Based Optimization (TLBO) are investigated on optimal domain decomposition for parallel computing. A clique graph is used for transforming the connectivity of a finite element model (FEM) into that of the cor...
متن کاملACS Algorithms for Complex Shapes with Certified Numerics and Topology Ridges 3 : Approximation of Ridges and Umbilics on Triangulated Surface Meshes
This paper describes the CGAL package for the approximating the ridges and umbilics of a smooth surface discretized by a triangle mesh. Given a smooth surface, a ridge is a curve along which one of the principal curvatures has an extremum along its curvature line. An umbilic is a point at which both principal curvatures are equal. Ridges define a singular curve —i.e. a self-intersecting curve, ...
متن کاملA New Approach of Backbone Topology Design Used by Combination of GA and PSO Algorithms
A number of algorithms based on the evolutionary processing have been proposed forcommunication networks backbone such as Genetic Algorithm (GA). However, there has beenlittle work on the SWARM optimization algorithms such as Particle Swarm Optimization(PSO) for backbone topology design. In this paper, the performance of PSO on GA isdiscussed and a new algorithm as PSOGA is proposed for the net...
متن کاملParameterizing Meshes with Arbitrary Topology
Parameterizing meshes is a basic requirement for many applications, including, e.g., reverse engineering , texture mapping, and re-meshing. We present a new fast algorithm that uses the hierarchical representation of a polygonal mesh with arbitrary topology for generating a geometry-driven parameterization.
متن کامل